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A derivation is given of the temperature equation for a wedge with
arbitrary included angle and boundary conditions of the second kind,
on the surface of which there acts a strip source of variable dimen-~
sions and intensity. An example of the calculation of dimensionless
temperature is examined, and its distribution over the boundary sur-
faces of the wedge is given.

When evaluating certain thermal processes in
engineering and metallurgical practice, it is neces-
sary to calculate the temperature in wedge-shaped
bodies whose surfaces contain concentrated heat
sources of variable intensity and frequently with di-
mengions which change with time. For example, prob-
lems of this kind arise in the calculation of tool tem-
peratures in different types of milling,

We shall examine an infinite wedge, unrestricted
in width, with included angle § (Fig. 1). We note,
as may be shown by calculation, that a bounded wedge
may be assumed unbounded if its length in the direc-
tion of the p-axis exceeds the Iength of the source b(T)
by a factor of 6—8. This proportion obtains as a rule
in the bits of cutting tools,

We shall locate a heat source of variable intensity
on the upper boundary of the wedge, which we shall
designate the active boundary. The width of the con-
tact area changes with time according to some law
b(r). It has been shown in a number of papers con-
cerned with different areas of technical thermophysics
[1, 2] that the distribution of heat source intensity is
close to normal. We shall therefore conduct our
examination for a normally distributed source, noting,
however, that the method proposed below may be used
also for solving problems with sources having other
distributions. .

We shall express the dependence of source strength
on time and on the coordinate of the point of the con-
tact surface q(7, 1) in the form of the product of two
functions, the first depending only on 7, and the sec-
ond on the polar radius r (Fig. 1). With a normal
distribution, the second function has the form
exp [-T%/26°], and therefore

g(x, r)=F(x)expl—r420%. )

In this expression f(7) is the dimensional part of
the intensity and its maximum value, while the ex-
ponential is a dimensionless multiplier. We shall
assume the wedge boundaries to be adiabatic, and the
problem to be a plane one.

On the active boundary of the wedge we shall choose
an infinitely small increment dr of radius in the
region of action of the source at a distance r from the

coordinate origin, Since the wedge and its sources

are not restricted in the direction perpendicular to
the plane of the sketch, the chosen element may be
taken as a line. Using the known expression [1] for
an instantaneous linear source, acting in an infinite

body,
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we may write an expression for calculating the tem-
perature at any point M (p, @) of the infinite body due
to the action of a strip source of strength q (7, 1), if
the gource heats the body during a time 7
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Here p is the angle between the plane source and
the radius vector drawn from the strip to the point M
in question. Now, substituting into (2) the expression
for the intensity (1), we obtain
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We shall introduce further dimensionless param-
eters, relating the linear and time quantities, respec-
tively, to the upper limits of integration:

r/b{t,) = v, p/b(t) =v, Tt =10, 1= <
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we may write the previous expression in the form
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Taking the inner integral in (4), with the aid of the
formulas given in [3], making the substitution n/e = §,
and carrying out a number of transformations, we
obtain an equation for the temperature of a point of
the infinite body with heating:
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Analysis of the quantities appearing in (5) shows
that the expression vI + £ — £1)/V*(E - ¢ i) takes
values of 2—-3 and more. The second term, in square
brackets, is many times less. Therefore the value
of the first probability integral differs little from
unity. We shall take it to be unity, which simplifies
the expression considerably., The error introduced
by this substitution even in the worst cases does not
fall outside the range 1-2%.

Then
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In the temperature formulas obtained, the factor
in front of the integral is the dimensional part, while
the integral itself is a dimensionless functional co-
efficient, We shall designate it
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and express the temperature in terms of this func-
tional coefficient:
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Formula (7) is valid for an unbounded body. To
calculate the temperature in the wedge, it is necessary
to perform a reflection, i.e., reduce the wedge to
an infinite body. Using the method of approximate
reflection of sources -in wedges with any included
angle, as previously described by the authors in [4],
we obtain
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In the last expression
3 = 360°/p — 2%,

where the quantity k is taken to be an even integer
when |6] < 2. The integersn=1, 2, 3, ..., k are the
number of reflected sources acting on the system.
The location of these sources is determined by the
angles

fn = (— 1) {0 —[1 —(— 12,

and the quantities 1y required for calculation of ny
from (7) are determined by the difference fiy = ¢ — ¢p.
The angle describing the location of a fractional
additional source [4], ¢q=180°+ B and ug= ¢ ~ ¢¢g
serve to calculate the value 74 from (7).

As an illustration, we shall calculate the dimen-
sionless temperature in a wedge with angle g = 72°,
and give a picture of the temperature distribution on
the wedge surfaces at the end of the heating period
¢ =1. :

Let the source intensity vary with time according
to the law ¥(¢ ;) = sin { . We note that this kind of
variation of source intensity may occur in examining
the cutting process when the cut thickness varies (for
example, in milling). We assume ® = £ = 1, and then
write
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We choose values of k and 6 according to the form-
ula 6 = 360°/72° — 2k = 5 — 2k such that k does not
exceed 2 in absolute value, k necessarily being even.
Thus k can only be 2, and then ¢ = +1, This means
that the number of double integral sources is 2, the
additional source being equal in power to the acting
source (6 = 1).

We now determine the angles describing the loca-
tion of the sources taking part in the reflection (¢,
@y, and @q):

o1 =(— D1 =l —(—1)2}.72° =0,
@y = (— D2 —[1 —(—1¥2}.72° = 144,
9y = 180° +72° = 252°.

We calculate the dimensionless temperature T
at point A (v = 1; ¢ = 0). For this point we calculate
the values iy = ¢ — ¢y and g = ¢ — ¢g:

p=0—0=0; po=0—144°= —144%
iy = 0— 2527 = —252°.

Substituting in (10), respectively, v =1 and the
values 4 obtained, and also carrying out an approxi-
mate integration according to the Chebyshev formula
[5], we obtain

m = 0.332, n,=0.0075,
Ng= 0.00268.
&)

Fig. 1. Schematic location of heat
source on the boundary surface of
an infinite wedge.

Then the dimensionless temperature at point A
will be

k
T=2Zm+8nd=2(m+n2)+ Loy, =

n=1
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— 2(0.332 -+ 0.0075) - 0.00268 = 0.683.

The temperatures at other points may be calculated
similarly. Figure 2 shows the temperature distribu-
tion on the boundaries of the wedge, calculated for
the example examined.

p =725

Fig. 2, Distribution of dimension-
less temperature on the boundary
planes of the wedge.

The solution derived may be used to calculate the
temperature in cutting tools during intermittent cutting
processes (milling, discontinuous turning, ete.).

Notation:

B—wedge angle; T-time of action of instantaneous
source element; q—intensity of heat source; r—polar
coordinate; c~characteristic of normal distribution
curve; q;—intensity of linear source; r—thermal con-
ductivity; a—thermal diffusivity; R—distance from
source element to point examined; t—time; o0 and ¢~
polar coordinates of point examined; 7;—duration of
heating; 1 —angle between source and point,
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