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A derivation is given of the temperature equation for a wedge with 
arbitrary included angle and boundary conditions of the second kind, 
on the surface of which there acts a strip source of variable dimen- 
sions and intensity. An example of the calculation of dirnensionless 
temperature is examined, and its distribution over the boundary sur- 
faces of the wedge is given. 

When evaluating certain thermal  processes  in 
engineering and metallurgical  pract ice,  it is neces-  
sa ry  to calculate the temperature  in wedge-shaped 
bodies whose surfaces contain concentrated heat 
sources of variable intensity and frequently with di- 
mensions which change with time. For  example, prob- 
lems of this kind arise in the calculation of tool tem- 
pera tures  in different types of milling. 

We shall examine an infinite wedge, unrestr ic ted 
in width, with included angle fi (Fig. 1). We note, 
as may be shown by calculation, that a bounded wedge 
may be assumed unbounded if its length in the direc-  
tion of the p-axis  exceeds the length of the source b0") 
by a factor  of 6 -8 .  This proportion obtains as a rule 
in the bits of cutting tools. 

We shall locate a heat source of variable intensity 
on the upper boundary- of the wedge, which we shall 
designate the active boundary. The width of the con- 
tact  area  changes with t ime according to some law 
b( D. It has been shown in a number of papers con- 
cerned with different areas of technical thermophysics  
[1, 2] that the distribution of heat source intensity is 
close to normal.  We shall therefore conduct our 
examination for a normally distributed source,  noting, 
however,  that the method proposed below may be used 
also for  solving problems with sources having other 
distributions. 

We shall express the dependence of source strength 
on time and on the coordinate of the point of the con- 
tact  surface q(% r) in the form of the product of two 
functions, the f i rs t  depending only on r, and the sec-  
ond on the polar  radius r (Fig. 1). With a normal  
distribution, the second function has the form 
exp [-r2/2cr2], and therefore  

q (~, r) = f (Q exp [ - -  r2/'2021. ( i )  

In this expression f ( r )  is the dimensional part  of 
the intensity and its maximum value, while the ex- 
ponential is a dimensionless multiplier.  We shall 
assume the wedge boundaries to be adiabatic, and the 
problem to be a plane one. 

On the active boundary of the wedge we shall choose 
an infinitely small increment  dr of radius in the 
region of action of the source at a distance r from the 

coordinate origin. Since the wedge and its sources 
are not res t r ic ted  in the direction perpendicular to 
the plane of the sketch, the chosen element may be 
taken as a line. Using the known expression [1] for 
an instantaneous linear source,  acting in an infinite 
body, 

0 -- q ~  exp --  
4nk t 

we may write an expression for calculating the tem- 
perature  at any point M (p, ~) of the infinite body due 
to the action of a strip source of strength q (7, r), if 
the source heats the body during a time ~'0: 

% b ( % )  

O(p, % t)=~14nk, Ji" S 
0 0 

q (~, r) drd~ 

t - - T  
X 

X exp[ 9 S + r ' ~ - - 2 p r c o s p ' ]  ] (2) 

Here # is the angle between the plane source and 
the radius vector drawn from the strip to the point M 
in question. Now, substituting into (2) the expression 
for  the intensity (1), we obtain 

% b(%) 

O(p, % t )=  1__~ " f (T)drd~ exp . . . . .  
4nk  t - -  

0 0 

p2 @ r 2 _ 2p r cos ,~ . ] .  

4a (t - -  "0 J 

i.-2 

2o -2 

(3) 

We shall introduce further  dimensionless pa ram-  
e ters ,  relating the linear and tih~e quantities, respec-  
tively, to the upper limits of integration: 

Then 

r / b ( % )  --=- '; i '  p/b'(zo) = v, "~/To ~ ~i, t %  = ~. 

I l 

b(%) ~f~(~ i )d~ id~i  

%) :i) 

Designating additionally the groups 

2~2/b 2 (%) = ~;, 4a ~o b ~ (%) = • 
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we may  wri te  the previous express ion in the fo rm 

1 1 

O(p, ep, t) b(%) f C,(;i)d~ld;t X 
= 4-~-- j ; - ; i  

0 0 

•  - -  " ~(~--~l) 

1 

= b(%) r exp X 

0 
1 

X exp - -  .i " k 
x(~--~i)  e d~i" 

0 

(4) 

Taking the inner integral  in (4), with the aid of the 
formulas  given in [3], making the substitution ~ / e  = ~, 
and car ry ing  out a number  of t rans format ions ,  we 
obtain an equation for  the t empera tu re  of a point of 
the infinite body with heating: 

0 

• ( l+~(~- - ; i )  
X X 

- - e f t  ] /x(-~_~i  ) V1 + ~ ( ~ - ~ i )  " (5) 

Analysis  of the quantities appearing in (5) shows 
that the express ion  ~/1 + ~(~ - ~ i ) / ~ - -  ~ i) takes 
values  of 2 - 3  and more .  The second t e r m ,  in square  
b racke t s ,  is many t imes  less .  There fore  the value 
of the f i r s t  probabil i ty  integral  differs little f rom 
unity. We shall  take it to be unity, which s implif ies  
the express ion  considerably.  The e r r o r  introduced 
by this substitution even in the wors t  cases  does not 
fal l  outside the range 1-2%. 

Then 
1 

0 

exp 1 
X x ( ~ - - ~ i )  ] + ~ ( ~ - - ~ i )  - -  X 

I / 1 + ~ ( ~ - ~ i )  

] • effc - ' ~ i )  " (6) 

In the t e m p e r a t u r e  fo rmulas  obtained, the fac tor  
in front  of the integral  is the dimensional  par t ,  while 
the integral  i tself  is a d imensionless  functional co-  
efficient.  We shall  designate it 

C F I  "~ COS F '1 I X  
1 1 = j e r f c  L" l f ; (~ - - - - - -~ i )V" l - } -~ i~ - -~ i )  J 

0 

[ ~, ( cos'~ l ) ] x  
><exp •  1 + ~ ( ; - - ~ i )  

x ~(~) d;i (7) 

and express  the t empera tu re  in t e r m s  of this func- 
ts coefficient: 

1 (8) 

Formula  (7) is  valid for  an unbounded body. To 
calculate the t empera tu re  in the wedge, it is necessa ry  
to pe r fo rm a ref lect ion,  i . e . ,  reduce the wedge to 
an infinite body. Using the method of approximate 
reflect ion of sources  in  wedges with any included 
angle, as previously descr ibed by the authors in [4], 
we obtain 

k 

n =  1 

_ 1 "1/ a% T. (9) 
4L g 

In the las t  express ion 

= 360~ -- 2k, 

where the quantity k is taken to be an even integer 
when ]51 < 2. The integers  n = 1, 2, 3, . . . ,  k a re  the 
number  of ref lected sources  acting on the sys tem.  
The location of these sources  is determined by the 
angles 

q& = (-- 1)"In--J1 --(-- 1).1/2}~, 

and the quantities #n required for  calculation of ~n 
f rom (7) a re  determined by the difference #n  = ~ - ~n. 
The angle describing the location of a f ract ional  
additional source  [4], q)d = 180~ + fl and Pd = q~ - ~d 
se rve  to calculate the value ~d f rom (7). 

As an i l lustrat ion,  we shall  calculate the dimen-  
s ionless  t empera tu re  in a wedge with angle fl = 72 ~ 
and give a pic ture  of the t empe ra tu r e  distribution on 
the wedge sur faces  at the end of the heating per iod 
(~ = 1). 

Let the source  intensity va ry  with t ime according 
to the law ~(g i) = sin ~ i. We note that this kind of 
var ia t ion  of source  intensity may  occur  in examining 
the cutting p rocess  when the cut thickness va r i e s  (for 
example ,  in milling). We assume  ~ = ~ = 1, and then 
wri te  

• exp 

1 

I( ) ~1----, erie - ] /  : ] = - - ~ i + 2  X 
0 

v~ cos2 F ~ ) sin ~id~i 
(1o) 
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We choose  va lues  of k and 5 acco rd ing  to the  form- 
ula 6 = 360o/72 ~ - 2k = 5 - 2k such tha t  k does  not 
exceed  2 in abso lu te  va lue ,  k n e c e s s a r i l y  be ing  even. 
Thus k can only be 2, and then 6 = +1. This  m e a n s  
tha t  the  n u m b e r  of double i n t e g r a l  s o u r c e s  is  2, the 
add i t iona l  s o u r c e  be ing  equal  in power  to the ac t ing  
s o u r c e  (5 = 1). 

We now d e t e r m i n e  the angles  d e s c r i b i n g  the l o c a -  
t ion  of the s o u r c e s  tak ing  p a r t  in the r e f l ec t ion  (91, 

92, and 9d):  

% =  (-- 1)~{1  --[1 --(-- i )11/2}  . 7 2  ~ = O, 

% = ( ~  1)~{2--[1 - - ( - -  1)~/2 }.72 ~ = 144 ~, 

~d = 180~ + 72~ = 252". 

We ca l cu l a t e  the d i m e n s i o n l e s s  t e m p e r a t u r e  T 
at  point  A (v = 1; ~ = 0). F o r  th i s  point  we ca l cu l a t e  

the  va lues  # n  = 9 - ~n and ~d  = 9 - ~d:  

~ = O - - O = O ;  1 ~ = 0 - - 1 4 4  ~  --144~ 

t a d ,  0---252 ~  ~ 

Subst i tu t ing in (10), r e s p e c t i v e l y ,  v = 1 and the 
va lue s  # obta ined ,  and a l so  c a r r y i n g  out an a p p r o x i -  
m a t e  i n t eg ra t i on  a c c o r d i n g  to  the Chebyshev  f o r m u l a  
[5], we obta in  

fh = 0.332, ~,_ = 0.0075, 

lid = 0.00268. 

b(T) 

0 

Fig. i. Schematic location of heat 
source on the boundary surface of 

an infinite wedge. 

Then the d i m e n s i o n l e s s  t e m p e r a t u r e  at  point  A 
wi l l  be 

k 

T = 2 Xvl,, + 5~ d = 2  Oh + "q~) + 1 .~id = 
n~l 

= 2 (0.332 + 0.0075) -t 0.00268 = 0.683. 

The t e m p e r a t u r e s  at  o the r  po in ts  may  be  c a l cu l a t ed  
s i m i l a r l y .  F i g u r e  2 shows the t e m p e r a t u r e  d i s t r i b u -  
t ion on the b o u n d a r i e s  of the wedge ,  c a l c u l a t e d  fo r  
the  e xa mple  examined .  

$3210 ~ ~ :  

Fig.  2. D i s t r ibu t ion  of d i m e n s i o n -  
l e s s  t e m p e r a t u r e  on the boundary  

p l anes  of the wedge.  

The so lu t ion  d e r i v e d  m a y  be  used  to ca l cu l a t e  the  
t e m p e r a t u r e  in cut t ing too l s  dur ing  i n t e r m i t t e n t  cut t ing 
p r o c e s s e s  (mi l l ing ,  d i scont inuous  tu rn ing ,  etc .  ). 

Notat ion:  

f l - -wedge angle ;  T - t i m e  of ac t ion  of  ins tan taneous  
s o u r c e  e l emen t ;  q - i n t e n s i t y  of hea t  s o u r c e ;  r - p o l a r  
coo rd ina t e ;  a - c h a r a c t e r i s t i c  of n o r m a l  d i s t r i b u t i o n  
c u r v e ;  q l - i n t e n s i t y  of l i n e a r  s o u r c e ;  k - t h e r m a l  con-  
duc t iv i ty ;  a - t h e r m a l  d i f fus iv i ty ;  R - d i s t a n c e  f rom 
s o u r c e  e l e m e n t  to point  examined ;  t - t i m e ;  p and 9 -  
p o l a r  c o o r d i n a t e s  of poin t  examined ;  r 0 - d u r a t i o n  of 
hea t ing ;  ~ - a n g l e  be tween  s o u r c e  and point .  
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